
A Study of BGP Path Vector Route Looping Behavior
�

Dan Pei
UCLA

peidan@cs.ucla.edu

Xiaoliang Zhao
USC/ISI

xzhao@isi.edu

Dan Massey
USC/ISI

masseyd@isi.edu

Lixia Zhang
UCLA

lixia@cs.ucla.edu

Abstract

Measurements have shown evidences of inter-domain
packet forwarding loops in the Internet, but the exact cause
of these loops remains unclear. As one of the efforts in
identifying the causes, this paper examines how transient
loops can be created at the inter-domain level via BGP,
and what are the major factors that contribute to duration
of the routing loops. As a path-vector routing protocol,
BGP messages list the entire AS path to each destination
and the path information enables each node to detect, thus
break, arbitrarily long routing loops involving itself. How-
ever, delays due to physical constrains and protocol mecha-
nisms slow down routing updates propagation and the rout-
ing information inconsistencies among the nodes lead to
loop formation during convergence. We show that the du-
ration of transient BGP loops match closely to BGP’s rout-
ing convergence time and the looping duration is linearly
proportional to BGP’s Minimum Route Advertisement In-
terval Timer (MRAI) value. We also examine four BGP
routing convergence enhancements and show that two en-
hancements effective in speeding up routing convergence
are also effective in reducing routing loops.

1 Introduction

Measurements [11, 6, 17] have shown that packet for-
warding loops exist in the Internet. However due to the
scale and complexity of the global routing infrastructure,
the exact causes behind routing loops remain unclear. The
Internet is composed of thousands of interconnected Au-
tonomous Systems (ASes), also called domains. Each do-
main deploys an intra-domain routing protocol, such as
OSPF[10], IS-IS [7], or RIP[9], to compute the internal
routes, and BGP serves as the inter-domain routing proto-
col which exchanges reachability information among the
ASes. Routing loops could potentially form due to behav-
iors in any of these protocols under dynamic topological

�

This work is partially supported by the Defense Advanced Research
Projects Agency (DARPA) under Contract No DABT63-00-C-1027, by
National Science Foundation (NSF) under Contract No ANI-0221453,
and by a research grant from Cisco Systems. Any opinions, findings and
conclusions or recommendations expressed in this paper are those of the
authors and do not necessarily reflect the views of the DARPA, NSF, or
Cisco Systems.

and policy changes, the interactions between the intra- and
inter-domain routing protocols, or even due to subtle im-
plementation details such as the delay between the routing
table change and the update to the forwarding table which
is used to forward packets. A complete understanding of
packet looping in the Internet requires an understanding of
all the above components and their interactions. As a first
step in identifying the causes of packet looping in the In-
ternet, this paper solely focuses on understanding routing
loops in path vector routing protocols in general, and in
BGP in particular.

Path-vector routing algorithms were designed as an
improvement over previous distance vector routing algo-
rithms. One of BGP’s primary reasons for adopting a path-
vector approach is to eliminate routing loops. BGP rout-
ing messages include the entire AS path to each destination
and, according to the BGP specification, “This (entire path)
information is sufficient to construct a graph of AS connec-
tivity from which routing loops may be pruned” [15, 16].
However, prior to the development of BGP there was no
in-depth study on the performance of path-vector routing
during topological changes. Our recent network simulation
studies show that transient routing loops exist in a network
using BGP as the only routing protocol [12], and that in the
absence of traffic congestion, packet looping during rout-
ing convergence is the primary cause of packet losses. In
this paper, we examine how routing loops are created in
a path-vector routing protocol such as BGP, and what are
the dominant factors that contribute to the duration of the
routing loops.

In recent years, there have been several research efforts
on improving BGP performance. Most of these studies
focused on improving BGP convergence time and reduc-
ing message overhead. While these enhancements do not
directly address packet looping, we are interested in un-
derstanding the impact these convergence enhancements
may have on packet looping. Thus in addition to study-
ing the standard BGP, we also analyzed and simulated the
following four proposed BGP enhancement mechanisms:
Sender Side loop detection [8, 5], Withdrawal Rate Lim-
iting(WRATE) [8, 5], Assertion approach [13], and Ghost
Flushing [1]. As an additional benefit, this study provides
the first side by side comparison of these proposed BGP
convergence improvements.

Our analysis and simulation show that a topology (or

policy) change can lead to inconsistent routing state among
network nodes, and the duration of such inconsistent state
is determined by both physical constraints such as message
processing time and propagation delay, as well as proto-
col mechanisms such as BGP’s Minimum Route Advertise-
ment Interval (MRAI) timer. During the routing conver-
gence period, transient forwarding loops may occur. Our
simulation results show that, in a network running standard
BGP, packet looping may persist throughout the routing
convergence period, and the majority of the packets sent
during this period may encounter loops. For example, in
a 110-node Internet-derived topology, BGP experienced a
convergence time of 527 seconds and 86% of the packets
sent during this time encountered transient loops. Our re-
sults also show that both the Assertion and Ghost Flush-
ing approaches are effective in speeding up routing con-
vergence and reducing transient loops, however WRATE
enhancement may significantly lengthen transient loop du-
ration compared to the standard BGP without WRATE.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews the previous studies on routing loops. Sec-
tion 3 illustrates the loop formation and analyzes the dom-
inant factors that contribute to the duration of looping in
path vector algorithms. Section 4 presents simulation re-
sults. Section 5 examines the impact of four BGP conver-
gence enhancement mechanisms on routing loops. Finally,
Section 6 concludes the paper.

2 Previous Studies on Routing Loops

Paxson [11] analyzed the end-to-end trace-route mea-
surements collected in 1994 and 1995, and detected a few
transient loops. The author conjectured that these transient
loops were caused by link failures, without pinning down
more precisely which component in the global routing in-
frastructure might have contributed to the loop formation
after the link failure.

Transient looping is known to occur in both link state
and distance vector routing protocols. Hengartner et al [6]
illustrated that transient loops can form in link state pro-
tocols, and used off-line analysis of packet traces to de-
tect loops on a backbone ISP who runs IS-IS, a link state
routing protocol, internally. They observed that forward-
ing loops were rare, that packets which encountered and
escaped a loop were delayed by an additional 25 to 1300
msec, and that 30% of loops on a subset of the links lasted
longer than 10 seconds. In addition, more than half of
the loops involved only two nodes. Sridharan et al[17]
used measurement data from the same backbone ISP to
correlate packet loops with IS-IS and BGP events. They
observed that IS-IS updates were seldom correlated with
packet loops, but there was a strong temporal correlation
between packet loops and BGP updates for the destination
prefixes of the looped packets.

In distance vector routing protocols such as RIP, link
failures may lead to counting-to-infinity [7] which results

in transient looping. Several mechanisms have been pro-
posed to improve distance vector routing by using path
finding techniques.The path finding algorithms [2, 4] at-
tach the second-to-last hop information to routing update
messages, which allows a node to reconstruct the full path
to a destination through iterative queries. While path find-
ing algorithms can provide significant improvement over
pure distance vector protocols in terms of loop detection,
they do not eliminate transient loops [4]. True loop free-
dom can be achieved through inter-nodal coordination al-
gorithm such as the DUAL algorithm [3] used by EIGRP
[7]. In this approach, backup paths are pre-calculated. Af-
ter a link failure, necessary checking is conducted to make
sure that the backup paths do not depend on the failed link
before they can be used for data forwarding. These algo-
rithms pay an overhead and delay cost for the coordination
needed to achieve the loop-freedom; packet flow is stopped
while backup paths are being verified. This delay can be
non-negligible and may lead to packet drops. [12] argues
that overall packet delivery can be improved by quickly se-
lecting (even non-optimal) paths.

BGP is the only path vector routing protocol in use to-
day. Unlike link state and distance vector routing proto-
cols, potential looping behavior of path vector protocols
has not been investigated. In BGP each node announces
to its neighbors the full path to each destination. How-
ever previous simulation work in [12] shows that BGP’s
full path information does not eliminate transient loops.
This paper focuses on the understanding of routing loops
in path vector routing protocols in general, and in BGP in
particular.

3 Loop Formation, Resolution and Duration
in BGP

BGP uses TCP for reliable update delivery. Each BGP
node announces to its neighbors its best path to each desti-
nation and keeps a copy of the most recent paths received
from each of its neighbors. The route to each destination
is advertised only once; subsequent updates are sent only
upon route changes. BGP also uses a Minimum Route Ad-
vertisement Interval (MRAI) timer to space out consecu-
tive updates for the same destination by

�
seconds (de-

fault value 30) with a small jitter interval. When a router
notices its current path to a destination, � , is no longer
available, it first attempts to find an alternative path to �
by looking through all the saved paths it learned from its
other neighbors previously. If no alternative path is found,
it sends an explicit path withdrawal message to its neigh-
bors. Following the BGP specification in RFC 1771 [15],
in this study the MRAI timer is not applied to withdrawal
messages, except when we simulate the Withdrawal Rate
limiting (WRATE) enhancement mechanism. We note that
the latest BGP specification update draft [16] has adopted
WRATE as the standard behavior.

For clarity of description, all the examples and simula-

AS node

destination

0
1

2
3

 4

 5

 6

path(4 <−0)=(4 0)*

path(5 <−4)=(5 4 0)*
path(5 <−6)=(5 6 4 0)

path(6 <−4)=(6 4 0)*

path(6 <−5)=(6 5 4 0)

path(6 <−3)=(6 3 2 1 0)

path(4 <−5)=()
path(4 <−6)=()

next hop
host

(a) Before the link failure

path(5 <−6)=(5 6 4 0)*

destination

1
2

3
 4

 5

 6
path(6 <−3)=(6 3 2 1 0)

path(4 <−0)=()

path(5 <−4)=()

path(6 <−5)=(6 5 4 0)*

path(6 <−4)=()
path(4 <−6)=()
path(4 <−5)=()

0

(b) Loop is formed

path(6 <−3)=(6 3 2 1 0)*

destination

0
1

2
3

 4

 5

 6

path(4 <−0)=()
path(6 <−4)=()path(4 <−5)=(4 5 6 3 2 1 0)

path(4 <−6)=(4 6 3 2 1 0)*

path(5 <−4)=(5 4 6 3 2 1 0)
path(5 <−6)=(5 6 3 2 1 0)*

path(6 <−5)=()

(c) Loop is resolved

Figure 1. Formation of Transient Loops in BGP

tions in this paper assume a shortest-path routing policy,
and the smaller node ID is used for tie-breaking between
equal length paths. Figure 1(a) shows the BGP routes
known by nodes 4, 5 and 6 to reach a destination connected
to node 0; the best path to the destination is marked with
a star, and the packet forwarding directions (next hops) be-
tween nodes are shown in dashed lines. The path infor-
mation is used to detect potential loops. When node

�
re-

ceives the path advertisement of ��� �����
from neighbor

node � , the path is discarded because it contains node
�
.

Similarly, node
�

also discards routes �	� �
��� or ����� �
���
when they are received from node � . More generally, node discards any path that includes itself. We call this feature
path-based Poison Reverse. The poison reverse scheme in
distance vector protocols, such as RIP [9], can only detect
2-node routing loops. The path-based Poison Reverse al-
lows a node to detect arbitrarily long loops involving itself.

3.1 Loop Formation in BGP

Figures 1(a), 1(b), and 1(c) illustrate how a transient
loop can occur in BGP. Assume that all packets are des-
tined to the destination connected to node 0. In Figure 1(a),
nodes � and � forward packets to node

�
and node

�
for-

wards the packets directly to node
�
. When link � �����

fails, node
�

sends withdrawal messages to both node � and
node � . Node � consults its routing table, finds a new path
���
� ����� , and starts forwarding data packets to node � . It
will also advertise its new path to its neighbors. Similarly,
node 6 chooses a new path ����� �����

, starts forwarding
packets to node � and will also advertise the new path to its
neighbors. As a result, data packets start looping between
nodes � and � immediately, as shown in Figure 1(b). Mean-
while, the new route advertisements from both node � and
node � are undergoing message processing delay, propa-
gation delay, and the MRAI timer delay. These delays in
routing update exchanges leads to inconsistent routing in-
formation between nodes � and � : � does not know � ’s
next hop has changed to � , and � does not know � ’s next
hop has changed to � . As soon as node � receives node � ’s
new path �	��� ����� , it will switch to path ��������� ��� , thus

breaking the loop, as shown in Figure 1(c). This example
illustrates how the transient routing state inconsistency re-
sulted in a simple 2-node loop. In a network as large as
the Internet, more complicated inconsistency scenarios can
arise and create routing loops of various sizes.

Although temporary path inconsistency is inevitable in
a distributed routing protocol due to inherent physical con-
strains such as processing time and propagation delay,
BGP’s MRAI timer’s impact on delaying routing informa-
tion exchange is far more significant than all the other fac-
tors. [1] shows that the MRAI delay is at least an order of
magnitude larger than the normal nodal delay of a rout-
ing message. However [5] shows that the MRAI timer
is necessary in order to suppress large amount of update
messages during BGP convergence. A large network using
BGP as the routing protocol inevitably faces route incon-
sistency and thus transient loops. Note also that while the
term MRAI timer is specific to BGP, routing protocols typ-
ically have some damping timer similar to the MRAI timer
to assure certain minimum delay between updates.

3.2 Loop Resolution and Duration

We have illustrated how delays can result in inconsis-
tent path information. Furthermore, after losing its current
path to a destination, a node may explore several paths in
sequence, and each of the new paths may be subject to the
MRAI timer delay. As a result, after a single failure mul-
tiple routing loops may form. Furthermore, a path update
which may help break a loop can be delayed by up to

�

seconds at a node, and such scenarios have been observed
in simulations (e.g. [12]). In this section, we use an anal-
ysis example similar to the one used in [4] to show the im-
pact of the MRAI timer on the resolution of a single routing
loop.

In Figure 2, at time � node ��� changes its path from� � �"!#��� �%$'&%(�) � to �*� �"!+��� �,$'-/.10 � with a new next hop �32 ,
and an 4 -node loop consisting of node � �,$ �32 3515351 �76 is
formed. Once this loop forms, we will have -/.18 �"! & � ���19 �;:
�79=< �,$ ��>@?A>B4DCE� , and -/.�8 �"! & � ���36 �A: � � . We
define -/.�8 �"! & � ���39 $"-/.�0 � as the next hop of �39 at time

nexthop(c_1, old)

. . .

0
. . .

.

.

.

c_m

nexthop at time t

previous nexthop

c_2

c_1

c_3

c_k

path(c_k, old)

nexthop(c_k, old)

path(c_1, old)

c_k+1

path(c_k+1, old)

nexthop(c_k+1, old)

nexthop(c_2, old)

Figure 2. Loop Formation at time � : ���
chooses � 2 as the new next hop, and the loop
consisting of �1� $ � 2 3535157 � 6 is formed.

t, and -/.�8 �"! & � ��� 9 $'&%(�) � as the previous next hop of � 9 ,
and corresponding paths are defined as �*� �"!+��� 9 $'-/.10 � , and� � �"!#��� 9 $'&%(�) � . We now consider how this loop can be re-
solved.

We say that there must exist a
� �	��> � > 4 �

such
that � � �"!#��� �%$"-/.�0 � takes the format of ��� � �32 51535 ��� � 5� � �"!#����� $'&%(�) � , where “ 5 ” is the concatenation operator for
paths. After some delay, � � sends �*� �"!+��� �%$"-/.�0 � to all its
neighbors, including �36 . If �*� �"!#��� �,$'-/.10 � is not the best
path available to �36 , �76 changes its path, switches to a next
hop different from ��� , and the loop is resolved. The loop
will also be resolved if �*� �"!+����� $'-/.10 � : ���1� � 2 53515 � � � 5� � �"!#��� � $'&%(�) � happens to include � 6 (i.e. �*� �"!+��� � $ &%(�) � in-
cludes � 6) since then � 6 will discard this path and choose
another next hop, or declare the destination unreachable.

If the loop is not resolved at � 6 , � 6 ’s new best
path becomes ��� 6 � 5 � � �"!#���1� $"-/.�0 � and � 6 will propa-
gate this new path to � 6�� � , and so on. In the worst
case, nodes ��� < ��$������ $ �76 all use � � �"!+��� �%$"-/.�0 � , and ��� < � ’s
new path will be �����7< � 53515 �76 � 5 � � �"!#��� �%$"-/.�0 � :
����� < � 53535 �76 � � �72 51535 ��� � 5 � � �"!#����� $ &%(�) � . Eventu-
ally when this new path is propagated to node ��� , the loop
is resolved. During this process, a routing message has to
travel 4 C �
	 � hops and can be delayed at each hop by
up to

�
seconds due to the MRAI timer. In the worst case,� : � and the resolution of an 4 -node loop can take up to

� 4 C � ��� �
seconds.

Note that in the worst case, the loop will not be re-
solved until �*� �"!+���1� $"-/.�0 � has propagated counterclock-
wise through the loop shown in Figure 2. However, the
loop can also be resolved sooner because of messages trig-
gered by other nodes. For example, before �*� �"!#���%� $'-/.�0 �
is propagated to ��� < � , ��� < � might send a new path to node
��� , causing ��� to change to a new next hop other than node
��� < � , and the loop is resolved. Nevertheless, at least one
message must be sent out by one of the nodes in the loop in
order to resolve the loop, and each message can be delayed

by the MRAI timer.
Also note that resolution of the loop consisting of

�1� $ � 2 1535153 � 6 shown in Figure 2 could result in another
(but different) loop. This new loop might consist of some
of the nodes in ��� $ � 2 1535351 � 6 , and these overlapping nodes
might be involved in looping for longer durations than
that of a single loop. In any case, we emphasize that the
MRAI timer delays the propagation of information needed
for loop resolution, and in the worst case a single 4 -node
loop’s duration can be as long as � 4 C � ��� �

seconds.

3.3 Remarks on Loop Detection and Prevention

We have shown that the path-based Poison Reverse en-
abled by BGP allows node to discard any � � �"!#�� � of ar-
bitrary length from neighbor if �*� �"!+�� � contains . How-
ever, BGP’s full path information does not prevent packet
loops from occurring. Figure 2 has shown that a node �%�
can pick a backup path which does not include itself, such
as ��� 2 53535 � � � 5 �*� �"!#��� � $'&%(�) � , even when the validity of
that path has been obsoleted by the latest topology change.
Selecting such an obsolete path can thus lead to transient
loops as shown in Figure 2. Furthermore, after a failure it
takes time for a node to receive neighbors’ new path infor-
mation and detect whether a loop has been created. Mean-
while, packets may already be in the forwarding loops. For
example, in Figure 2, when ��� detects the loop after receiv-
ing (� � < � 53515 � 6 �1� 53535 � � � 5 � � �"!#��� � $'&%(�) � , this loop
may have lasted for up to � 4EC ��	 � ��� �

seconds and a
large number of packets may have been forwarded around
the loop during this time.

Existing loop prevention algorithms, such as the DUAL
algorithm [3], avoid using any previously obtained in-
formation after a failure until the information is verified.
However, the verification step delays the use of any backup
path, causing all incoming packet being dropped in the
meanwhile. We are exploring new directions for solutions
that minimize both looping and packet losses.

4 Simulation Results For Standard BGP

In this section, we use simulation to further explore
BGP’s transient looping behavior.

4.1 Simulator Topologies and Settings

We use the SSFNET [18] simulator to measure both
BGP looping and data delivery. In each topology, we
choose one AS to contain a destination host, and every
other AS has one host that sends a constant rate IP packet
stream to the destination. We then inject a topology change
event to trigger BGP routing adaptation. In a ��������� event,
the destination AS becomes unreachable from the rest of
the network. Although the destination is unreachable,
packets sent and trapped in the transient loops can continue
to consume network resources during ��������� convergence

Host

1

0 3

 2

destnation
source 3

source 1 source 2

AS

(a) CLIQUE of size 4

source 4 4

 5 6

 7

0

1

3
 2

destination

source 1

source 2

source 3

source 7

source 6source 5

(b) B-CLIQUE of size 4

Figure 3. CLIQUE, and B-CLIQUE Topologies

period. In a � � � ��� event, a link in the network fails, which
does not disconnect the destination AS but forced the rest
of the network to use less preferred paths to reach the des-
tination. Looping during � � � ��� convergence can introduce
losses and long delays to packets. In all our simulations,
the

�������
timer is implemented on a per (destination,

neighbor) pair base, and its value is configured to be � �
seconds with a random jitter, unless specified otherwise.

Clique, B-Clique and Internet-derived network topolo-
gies were used in our simulations. Clique (full-mesh)
topologies, shown in Figure 3(a), are frequently used in
literature [8, 5, 1] as a simple basis for analysis and com-
parison for � ��� ��� convergence. A B-Clique topology of
size - , shown in Figure 3(b), consists of � - nodes. Nodes� 1535157"- C�� constitute a chain topology of size - , and nodes
- 3515357 � - C � constitute a Clique topology of size - . Node�

is connected to node - , and node - C � is connected to
node � - CA� . This topology is used to model an edge net-
work (node

�
) that has a direct link and a long backup path

(the chain) to the well-connected Internet core (a Clique
topology). In our simulation, AS

�
is chosen as the desti-

nation AS and the link between AS
�

and - is failed during
simulation to induce a � � � ��� event. To represent an Inter-
net topology, we used 29-node and 110-node topologies
which were derived from actual Internet routing tables as
described in [14]1. Following the same algorithm in [14],
we also generated two more Internet-like topologies with
75 nodes and 48 nodes, respectively. In the Internet topolo-
gies, the destination AS was randomly chosen among the
nodes with the lowest degrees and in � � ����� one of its link
is randomly chosen to fail. The simulation were repeated
for a number of times with different destination ASes and
failed links.

1Due to memory requirements, SSFNET can support relatively small
topologies, and topologies generated by power-law generators are not suit-
able for small topologies [19].

4.2 Simulation Metrics

We use TTL exhaustion (i.e. a packet’s TTL is decre-
menting to zero) as a simple indication of routing loops.
The TTL is set such that if a packet is dropped due to TTL
exhaustion, there must exist a routing loop in the network
around the time when this packet is dropped. However if
the network convergence time is very short, a packet in-
volved in a loop might escape from the loop before it is
dropped due to TTL exhaustion, hence we may see no TTL
exhaustion even though loops exist. To help counter this,
we set the following parameters to insure that some packets
involved in a loop will be caught by TTL exhaustion.

We set the link delay to 2 milliseconds and the routing
message processing delay (uniformly distributed between
0.1 second and 0.5 second) to be two orders of magni-
tude larger than the link propagation delay. With an ini-
tial TTL value of 128, a data packet will have a lifetime
of ���
	 � �%4�� : � ��� 4� before TTL exhaustion. In some
sense, the impact of message processing delay on routing
loops is emphasized in our study and the impact of propa-
gation delay on routing loops is negligible. We intention-
ally set a slow data packet rate of 10 packets per second to
avoid congestion and make packet queueing delay negligi-
ble. The 100ms inter-packet time also assures that at least
some packets are sent during the transient loops that last
longer than 256ms.

Note that the simulated TTL is decremented by one at
each node, which represents an AS in our simulation. In the
Internet, a single AS normally contain many routers and a
packet traversing an AS may have its TTL decremented by
a large value (or an intra-AS loop could even decrement the
TTL to zero). However because our main purpose is to use
TTL exhaustion as an indication of the existence of BGP
routing loops at the inter-domain level, this inaccuracy in
TTL decrement should not affect our simulation results.

We measure the BGP routing loops by the following
metrics. First, Overall Looping Duration starts when the
first TTL exhaustion occurs and ends when the last TTL
exhaustion occurs. This is a rather coarse estimate on loop
duration, and it only reflects the length of the period dur-
ing which loops existed. Second, Convergence Time starts
when the link failure happens, and ends when the last BGP
update message is sent. Third, we count the Number of TTL
Exhaustions, which reflects the aggregated effect of the fre-
quency and duration of individual loops. Finally, to bet-
ter compare the network with different numbers of source
hosts and MRAI timer settings, we also measure Looping
Ratio, the ratio of “Number of TTL exhaustions” to “Num-
ber of packets sent during convergence time”. This metric
can be considered as the the probability that a packet sent
during routing convergence encounters looping.

4.3 Simulation Results

Figure 4 shows the comparison of overall looping du-
ration and convergence time with various network topolo-

0

100

200

300

400

500

600

700

0 5 10 15 20 25 30

T
im

e(
se

co
nd

s)

Clique of size n

Standard BGP

Convergence time
Looping Time

(a)
���������

in Clique topologies

0

100

200

300

400

500

600

700

0 5 10 15 20 25 30

T
im

e(
se

co
nd

s)

B-Clique of size n

Overall Looping Duration

Convergence time
Looping Time

(b)
�
	 �����

in B-Clique topologies

�����

������������������
���
���

���� ���
���
��

���
���
��

���
���
���
���
���
���
�

���
���
���
���
���
���
�

0

50

100

150

200

250

300

350

400

450

500

550

29 48 75 110

T
im

e
(s

ec
on

ds
)

Internet subgraph of size n [type=failure]

convergence time
looping time

(c)
���������

in Internet-Derived topologies

Figure 4. Overall Looping Duration and Convergence Time with various network sizes

0

50

100

150

200

250

300

350

400

450

500

15 20 25 30 35 40 45 50 55 60

T
im

e(
se

co
nd

s)

MRAI Value

Overall Looping Duration

Convergence time
Looping Time

(a)
� �������

in Clique

0

100

200

300

400

500

600

15 20 25 30 35 40 45 50 55 60

T
im

e(
se

co
nd

s)

MRAI Value

Standard BGP

Convergence time
Looping Time

(b)
� 	 �����

in B-Clique

Figure 5. Overall Looping Duration and Con-
vergence Time with various MRAI timer val-
ues

gies. Figure 5 shows this comparison with various MRAI
values. In Figure 4(a) and 4(c), � ��� ��� ’s overall looping du-
ration is only a few seconds shorter than the convergence
time, showing that looping happens through the � ��� ��� con-
vergence. Figure 4(b) shows that the overall looping dura-
tion in � � � ��� is typically 30 to 45 seconds shorter than the
convergence time2.

These results demonstrate that looping indeed happens
during BGP convergence, and even worse, it happens al-
most throughout the convergence period.

Observation 1 The overall looping duration is closely
coupled with the convergence time and the overall looping
duration is linearly proportional to the MRAI value.

As we discussed in Section 3, MRAI timer is the major
theoretical factor contributing to the loop duration, and an
4 -node loop can last for ��4 C � ��� �

seconds. Figure

2The final update sent in
� �������

is a withdrawal, which is not delayed
by MRAI timer. In

� 	 �����
, on the other hand, even after a loop is resolved,

a node may not be able to send out its best path immediately due to MRAI
timer, which delays the convergence time(as measured by the time the last
message is sent). However in either case this final update does not trigger
any further routing changes, indicating that the routing state at all the
nodes are already consistent, i.e. loop free, at the time of this last update
message. This explains why gap between convergence and looping time
is different for

���������
and

��	 �����
.

5(a) shows that � ������� convergence time in Clique is lin-
early proportional to the MRAI value, confirming the re-
sults from [5]3. Furthermore, our results in Figure 5(b)
shows that the convergence time of B-Clique is also lin-
early proportional to the MRAI value. Given that the con-
vergence time and the overall looping duration are closely
coupled, it is not surprising that the overall looping dura-
tion, also shown in Figures 5(a) and 5(b), is also linearly
proportional to the MRAI timer value.

Figure 6 shows the number of TTL exhaustions (left Y-
axis) and looping ratio (right Y-axis) using various network
sizes. Figure 7 shows the results using various MRAI val-
ues.

Observation 2 In � ��� ��� with Clique topologies and � � �����
with B-Clique topologies, the number of TTL exhaustions
is linearly proportional to the MRAI timer value, while the
packet looping ratio stays almost constant.

In Section 3, we argued that the MRAI timer is the major
contributing factor of the duration of each individual loop.
Since packet generation rate is constant in our simulation,
the number of TTL exhaustions caused by one specific loop
is determined by the duration of the loop, which, in turn, is
linearly proportional to the MRAI value. Therefore, it is
not surprising that the aggregation of TTL exhaustions for
all the individual loops during the convergence, as shown
in Figure 7, is also linearly proportional to the MRAI value.

The looping ratio is more than 65% for ��������� in Clique
of size 15 or larger and more than 35% for � � � ��� in B-
Clique of size 15 or larger.4 These ratios are lower than
ratio of “overall looping duration” to ”convergence time”
shown in Figures 4 and 5. This shows that not every node
is involved in a loop at a given time and there is not al-
ways a loop during the “overall looping duration”. On the

3[5] shows that this property holds only when the MRAI value is larger
than a topology-specific optimal value, which is a value large enough for
a node to process the messages received from all the neighbors.

4Note that in
� 	 �����

convergence not every node in the network will
be affected. For example, in B-Clique topology, nodes ����������� ��!"� are not
affected by link failure # ��$&% , therefore the packets sent by them will not
encounter a loop.

0

20000

40000

60000

80000

100000

120000

140000

0 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
um

be
r

of
 T

T
L

E
xh

au
st

io
ns

Lo
op

in
g

R
at

io

Clique of size n

Standard BGP

Number of TTL Exhaustions
Looping Ratio

(a)
���������

in Clique topologies

0

20000

40000

60000

80000

100000

120000

140000

160000

0 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
um

be
r

of
 T

T
L

E
xh

au
st

io
ns

Lo
op

in
g

R
at

io

B-Clique of size n

Standard BGP

Number of TTL Exhaustions
Looping Ratio

(b)
�
	 �����

in B-Clique topologies

���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

550000

29 48 75 110
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
um

be
r

of
 T

T
L

 E
xh

au
st

io
ns

L
oo

pi
ng

 R
at

io

Internet−derived topology of size n [type=failure]

Number of TTL Exhaustion
Looping Ratio

(c)
���������

in Internet-derived topologies

Figure 6. Number of TTL Exhaustions and Looping Ratio with Various Network Topologies

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

15 20 25 30 35 40 45 50 55 60

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
um

be
r

of
 T

T
L

E
xh

au
st

io
ns

Lo
op

in
g

R
at

io

MRAI Value

Standard BGP

Number of TTL Exhaustion
Looping Ratio

(a)
� �������

in Clique

0

10000

20000

30000

40000

50000

60000

70000

15 20 25 30 35 40 45 50 55 60

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
um

be
r

of
 T

T
L

E
xh

au
st

io
ns

Lo
op

in
g

R
at

io

MRAI Value

Standard BGP

Number of TTL Exhaustion
Looping Ratio

(b)
� 	 �����

in B-Clique

Figure 7. Number of TTL exhaustions and
looping ratio with various MRAI values

other hand, the looping ratio does reflect the probability of
looping (e.g. 65% in � ��� ��� in Clique topologies) when a
packet is sent to network during the convergence.

We observed almost constant looping ratio when vary-
ing MRAI values in Clique and B-Clique topologies and
this observation warrants more detailed discussion. As we
discussed before, the MRAI timer is the dominant factor
contributing to the duration of each individual loop. How-
ever, varying MRAI timer itself introduces little random-
ness and does not change the patterns and frequency of the
loops formed during convergence. The major impact of
varying MRAI timer value is simply a change in the dura-
tion of each individual loop. On the other hand, we have
shown that the convergence time is linearly proportional
to the MRAI timer value. Given the constant packet rate,
and duration of the each individual loop is linearly propor-
tional to the MRAI timer value, the looping ratio (defined
as the number of TTL exhaustions divided by the number
of packets sent during convergence) remains constant. In
other words, the constant looping ratio is a result of the
dominance of the MRAI timer on duration of individual
loops.

5 Convergence Enhancement Mechanisms

In Section 4, we observed that the overall looping du-
ration in BGP is closely coupled with the routing conver-
gence time. To further understand the relation between
routing loops and convergence improvement, we simu-
lated the following four BGP convergence enhancements:
Sender Side loop detection (SSLD) [8, 5], Withdrawal Rate
Limiting (WRATE) [8, 5], Assertion approach [13], and
Ghost Flushing[1]. SSLD and WRATE are built-in in the
SSFNET simulator, and we implemented Assertion ap-
proach and Ghost Flushing in SSFNET according to the
description in [13] and [1], respectively. To the best of our
knowledge, our work provides the first study on the im-
pact of these enhancement mechanisms on transient rout-
ing loops. This work is also the first comparative simula-
tion study of these convergence enhancements. Figure 8
shows the results for � ������� events, and Figure 9 shows the
results for � � ��� � events.

Observation 3 Both Assertion and Ghost Flushing are ef-
fective in speeding up route convergence and reducing
transient loops, while SSLD and WRATE are not.

� Assertion approach consistently improves conver-
gence time and reduces looping, but the magnitude
of the improvement depends on the details of topol-
ogy. In Clique and B-Clique topologies, Assertion
approach is most effective among the four enhance-
ment mechanisms in reducing both packet looping and
the convergence time, however the improvements are
much less pronounced in Internet-derived topologies.

� Ghost Flushing consistently reduces both BGP con-
vergence time and looping (by 80% in large topolo-
gies), and gives the best results among the four en-
hancement mechanisms for Internet-derived topolo-
gies. However its improvement is reduced in large
size Clique and B-Clique Topologies due to the high
overhead of flushing withdrawal messages after each
failure.

� SSLD can also reduce BGP convergence delay and
looping losses, but only by a modest amount.

� WRATE reduces packet looping in Clique and
B-Clique topologies, however for Internet-derived
topologies, it increases packet looping by at least 20%
in � ������� and by an order of magnitude in � � ��� � . It
also slightly increases the � � ����� convergence time in
B-Clique topologies.

The Assertion approach proposed in [13] removes in-
consistent routes by fully utilizing locally available infor-
mation. For example in Figure 1(b), when node � receives
a withdrawal message from node

�
, it will also remove the

backup path ����� ����� since the path goes through node
�
.

More generally, when node receives a path � � �"!+�� $'-/.�0 �
from neighbor , removes any backup paths that include
 and contain a sub-path different from �*� �"!#�� $"-/.�0 � . In
the Clique topologies, all other nodes are directly con-
nected to node

�
, and thus can achieve immediate conver-

gence after receiving the withdrawal from node
�
. How-

ever, in the Internet-derived topologies, it is unlikely that
all the other nodes are directly connected to the origin AS,
thus the assertion checking is less likely to detect obso-
lete paths than in the case of Clique topologies (similar in
� � � ��� convergence). Overall, Assertion provides each node
increased ability to detect obsolete paths, hence reducing
the chance of packet looping, with an effectiveness degree
depending on topological properties such as the degree of
origin AS or the AS closest to the failure.

Ghost Flushing[1] requires that a node immediately
send a withdrawal when the node changes to a longer
path when the new path announcement is delayed by the
MRAI timer. “Withdrawal flushing” can quickly flush
out obsolete path information, such as � � �"!+����� $ &%(�) � or� � �"!#��� �%$'&%(�) � in Figure 2. A quick flush of � � �"!+����� $ &%(�) �
reduces the chance that node �,� would use �*� �"!#��� � $ &%(�) � ,
and flushing �*� �"!#����� $'&%(�) � immediately resolves the loop.
Only message processing and propagation delay affect the
resolution and duration of the loops. In our simulation the
message processing time is set relatively large (0.1 to 0.5
seconds), therefore in the cases of Clique and B-Clique of
size 26 and higher the message containing the latest path
information is delayed by the processing of a large num-
ber of withdrawal flushes5. Ghost Flushing reduces conver-
gence time and looping duration for ����� ��� in both Clique
and Internet-derived topologies. It also reduces the con-
vergence and looping duration for � � ����� in B-Clique and
Internet-derived topologies, although the convergence time
reduction in the latter case is less dramatic (since standard
BGP’s convergence time is already below 65 seconds).
Overall, Ghost Flushing reduces packet looping by at least
80% in Clique topologies and Internet-derived topologies
for both � ��� ��� and � � ����� .

5The exact turning point depends on the message processing time. Our
large processing time setting helps showing the trend of Ghost Flushing’s
performance as the node degree increases.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

5 10 15 20 25 30

P
er

ce
nt

ag
e

of
 B

G
P

 lo
op

s

lique of size n

Compared to BGP

Standard BGP
SSLD

WRATE
Assertion

Ghost Flushing

(a) TTL Exhaustion Normalized by Standard BGP in
Clique

0

100

200

300

400

500

600

700

0 5 10 15 20 25 30

T
im

e(
se

co
nd

s)

Clique of size n

Convergence Time

Original BGP Convergence time
SSLD convergence time

WRATE Convergence time
Assertion convergence time

Ghost Flushing convergence time

(b) Convergence Time in Clique

������

������ �� ������
���
������
��� 		

		
		
		
		
		
		

������

�
� �������� ������

������
������

������
������
������

������
������
������
������
������
������
������
������
������
���

������
������
������
������
������
������
������
������
������
���

������

���� �� ���
�

��
��
��
�

��
��
��
�

0

100000

200000

300000

400000

500000

600000

700000

29 48 75 110

N
um

be
r

of
 L

oo
pi

ng
 P

ac
ke

ts

Internet subgraph of size n [type=failure]

Standard BGP
SSLD

WRATE
Assertion

Ghost Flushing

(c) TTL Exhaustion in Internet-derived Topologies

������ � �

!" #�#$ %�%%�%
%�%%�%
&�&&�&
&�&&�&

'�''�'
'�''�'
'�''�'
'�''�'
'�''�'

(�((�(
(�((�(
(�((�(
(�((�(
(�((�(

)�)*�*

+�++�+
+�++�+
+�++�+
+�++�+

,�,,�,
,�,,�,
,�,,�,
,�,,�,

-�--�-
-�--�-
-�--�-
-�--�-
-�-

..
..
..
..
.

//
//
//
//
//
//

00
00
00
00
00
00

11
11
11
11
11
11
11
11
11
1

22
22
22
22
22
22
22
22
22
2

3�34�4

56 7�78 99
99
::
::

;;
;;
;;

<<
<<
<<

0

100

200

300

400

500

600

700

800

900

1000

29 48 75 110

T
im

e
(s

ec
on

ds
)

Internet subgraph of size n [type=failure]

Standard BGP
SSLD

WRATE
Assertion

Ghost Flushing

(d) Convergence Time in Internet-derived Topologies

Figure 8. � ��� ��� in Clique and Internet-derived
Topologies

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

5 10 15 20 25 30

P
er

ce
nt

ag
e

of
 B

G
P

 lo
op

s

B-clique of size n

Compared to BGP

Standard BGP
SSLD

WRATE
Assertion

Ghost Flushing

(a) TTL Exhaustion Normalized by Standard BGP in
B-Clique Topologies

0

100

200

300

400

500

600

700

0 5 10 15 20 25 30

T
im

e(
se

co
nd

s)

B-Clique of size n

Convergence Time

Standard BGP Convergence time
SSLD convergence time

WRATE Convergence time
Assertion convergence time

Ghost Flushing convergence time

(b) Convergence Time in B-Clique Topologies

������

�� ���
� ��

	�	

������

������

������������������

��
�
��
�

��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
�

������

���� ��
0

200

400

600

800

1000

1200

29 48 75 110

N
um

be
r

of
 L

oo
pi

ng
 P

ac
ke

ts

Internet subgraph of size n [type=failover]

Standard BGP
SSLD

WRATE
Assertion

Ghost Flushing

(c) TTL Exhaustion in Internet-derived Topologies

����������������

��
��
��
�� ������������

��
��
��
��
��
��
��
��
�

!�!!�!"�""�"

#�#�#$�$

%�%%�%%�%%�%%�%%�%%�%%�%

&&
&&
&&
&&

''
''
''
''
''

((
((
((
((
((

)�))�))�))�))�))�))�))�))�))�))�))�))�))�))�))�))�))�))�)

*�**�**�**�**�**�**�**�**�**�**�**�**�**�**�**�**�**�**�*

++
++
++
+

,,
,,
,,
,

-�-�-.�.

//
/
00
0

112
2 3�33�33�33�33�33�33�33�33�33�33�33�33�33�33�33�33�3

4�44�44�44�44�44�44�44�44�44�44�44�44�44�44�44�44�4

5�55�55�55�55�5
6�66�66�66�66�6

25

30

35

40

45

50

55

60

65

29 48 75 110

T
im

e
(s

ec
on

ds
)

Internet subgraph of size n [type=failover]

Standard BGP
SSLD

WRATE
Assertion

Ghost Flushing

(d) Convergence Time in Internet-derived Topologies

Figure 9. � � ��� � in Backup-Clique and Internet-
derived Topologies

Although Ghost Flushing is effective in reducing both
routing convergence delay and packet looping, it provides
fast propagation of failure information without propagat-
ing the new reachability information at the same speed.
Thus nodes that lost their current path to the destination
due to the failure end up dropping packets, as opposed to
continuing forwarding packets based on the old reachabil-
ity information. Had these packets not been dropped, they
may have been delivered to the destination by following a
longer path or escaping a transient loop. Future research ef-
forts are needed to develop a full understanding of routing
convergence algorithms that can simultaneously minimize
both packet looping and packet drops caused by the lack of
reachability.

The Sender Side Loop Detection (SSLD)[8] applies the
path loop detection rule at the sender. Before sending a
path, a node checks whether the receiver is present in the
path; if so, the sender knows the path will be discarded by
the receiver. For example, with SSLD, node � in Figure
1(b) knows that node � will discard path ��� � � ���

. In-
stead of sending this path (which is subject to MRAI timer
delay), node � will send a withdrawal message to node �
(which is not limited by the MRAI timer). Had the path
��� � � ���

been sent to node � , it would only serve as
a path-based poison reverse message; instead by sending
a withdrawal SSLD allows this path-based poison reverse
information to arrive faster. With SSLD, the loop dura-
tion in Figure 1(b) is determined only by the processing
time and propagation delay. However, when a loop con-
sists of more than two nodes such as the one in Figure 2,
SSLD applies only when �*� �"!+��� �,$'-/.10 � includes �76 , or� � �"!#���76 $"-/.�0 � includes �36�� � , and so on. The chance of
such loop resolution is low. Our simulation results show
that SSLD reduces packet looping by less than 20% when
the topology is larger than 15 nodes, and improves conver-
gence time only modestly, which confirms the results by
[5]. SSLD consistently reduces BGP convergence delay
and packet looping, albeit with a rather modest effective-
ness.

Withdrawal rate limiting (WRATE) requires that the
MRAI timer be applied to withdrawal messages as well. It
has been implemented by at least one router vendor [8, 5],
and the latest BGP specification draft [16] has adopted
WRATE as the standard behavior. A withdrawal message
can sometimes lead to inconsistent routing state (e.g. a
router loses its current route to a destination and picks
an obsolete alternative route), and WRATE “hopes” to re-
duce loops by propagating withdrawal and new reachabil-
ity messages at the same speed. However, WRATE can
delay a withdrawal that could have resolved a loop, thus
lengthening the looping duration as a result. There has
been no quantitative analysis to show how much WRATE
can help reduce routing loops in general. It has been shown
in [5] that WRATE improves the � ������� convergence time
in Clique topologies &,-/(87 , and makes � ��� ��� convergence
time longer in other topologies. Our results further show
that WRATE slightly increases the � � � ��� convergence de-

lay in both B-Clique topology and Internet-derived topolo-
gies. WRATE also reduces packet looping in � ��� ��� for
Clique and � � ��� � in B-Clique by less than 20-30%. In the
Internet-derived topologies, WRATE consistently worsens
both the convergence time and packet looping; in particu-
lar, WRATE makes packet looping in � � ����� one order of
magnitude worse than the standard BGP. Further examina-
tion on packet forwarding performance is needed to under-
stand the overall impact of a change in BGP specification
such as WRATE.

6 Summary

In any distributed routing protocol, topology (or policy)
changes can lead to inconsistent routing state among net-
work nodes. Whether this inconsistency results in transient
forwarding loops depends on the ability of each node to
avoid potential loops while selecting an alternative path.
Link state protocols typically propagate updates fast to re-
duce the duration of inconsistency, but transient loops can
still form since delays are inevitable. For distance vector
protocols, poison-reverse can be used to detect two-node
loops but fails to detect longer loops.

A path vector routing protocol extends the effectiveness
of poison-reverse to the entire path by enabling each of the
nodes in the path immediately detect loops involving itself.
In other words, when node has lost its current route to a
destination, can avoid those alternate paths that include
itself. However as we demonstrated,this form of path-
based poison reverse does not eliminate routing loops; in
the worst case, a loop may not be detected until all the path
updates triggered by a topology change have reached ev-
ery node in the loop. Consequently, a routing loop can last
as long as the routing convergence time period, and BGP’s
MRAI timer is the major contributing factor to the looping
duration. Our simulation results show that overall loop-
ing duration are linearly proportional to the MRAI timer
value. For a network using an Internet-derived 110-node
topology, BGP may experience a convergence time of 523
seconds in � ��� ��� event; during this time packets in the net-
work may encounter looping with a probability up to 86%.

Furthermore, we show through analysis and simulation
that both the Assertion and Ghost Flushing approaches are
effective in both speeding up routing convergence and re-
ducing transient loops. Our results also show that the
WRATE enhancement, recently adopted by BGP specifi-
cation, may significantly lengthen the duration of transient
loops compared to the standard BGP without WRATE.

To the best of our knowledge, this paper is the first ef-
fort to systematically examine the creation and duration of
transient routing loops under a path-vector routing protocol
such as BGP. As a first step our investigation started with
a few simple simulation cases and used aggregate metrics
such as overall looping duration and looping ratio to mea-
sure the severity of transient loops. As our next steps, we
plan to examine route change traces to measure the statis-
tics of individual loops such as the loop size and duration.

References

[1] A. Bremler-Barr, Y. Afek, and S. Schwarz. Improved BGP
Convergence via Ghost Flushing. In Proceedings of the
IEEE INFOCOM, April 2003.

[2] C. Cheng, R. Riley, S. Kumar, and J. Garcia-Lunes-Aceves.
A Loop-Free Extended Bellman-Ford Routing Protocol
Without Bouncing Effect. In Proceedings of ACM Sig-
comm, pages 224–236, August 1989.

[3] J. J. Garcia-Luna-Aceves. A unified approach to loop-free
routing algorithm using distance vectors or link states. In
Proceedings of ACM Sigcomm, September 1989.

[4] J. Garcia-Lunes-Aceves and S. Murthy. A Path-Finding
Alogirthm for Loop-Free Routing. IEEE/ACM Transaction
On Networking, 5(1), February 1997.

[5] T. Griffin and B. Premore. An Experimental Analysis of
BGP Convergence Time. In Proceedings of ICNP, Novem-
ber 2001.

[6] H. Hengartner, S. Moon, R. Mortier, and C. Diot. Dection
and Analysis of Routing Loops in Packet Traces. In Pro-
ceedings of ACM IMW 2002, October 2002.

[7] C. Huitema. Routing in the Internet. Prentice-Hall, 2000.
[8] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian. Delayed

Internet Routing Convergence. In Proceedings of ACM Sig-
comm, August 2000.

[9] G. Malkin. Routing Information Protocol Version 2. RFC
2453, SRI Network Information Center, November 1998.

[10] J. Moy. OSPF Version 2. RFC 2328, SRI Network Infor-
mation Center, September 1998.

[11] V. Paxson. End-to-End Routing Behavior in the Inthernet.
IEEE/ACM Transactions on Communications, 5(5):610–
615, 1997.

[12] D. Pei, L. Wang, D. Massey, S. F. Wu, and L. Zhang. A
study of packet delivery performance during routing con-
vergence. In IEEE DSN, June 2003.

[13] D. Pei, X. Zhao, L. Wang, D. Massey, A. Mankin, F. S. Wu,
and L. Zhang. Improving BGP Convergence Through As-
sertions Approach. In Proceedings of the IEEE INFOCOM,
June 2002.

[14] B. Premore. Multi-as topologies from bgp routing tables.
http://www.ssfnet.org/Exchange/gallery/asgraph/index.html.

[15] Y. Rekhter and T. Li. Border Gateway Protocol 4. RFC
1771, SRI Network Information Center, July 1995.

[16] Y. Rekhter, T. Li, and S. Hares. Border Gateway Pro-
tocol 4. http://www.ietf.org/internet-drafts/draft-ietf-idr-
bgp4-20.txt, April 2003.

[17] A. Sridharan, S. Moon, and C. Diot. On the correlation
between route dynamics and routing loops. In Proceedings
of ACM IMC 2003, October 2003.

[18] The SSFNET Project. http://www.ssfnet.org.
[19] H. Tangmuarunkit, R. Govindan, S. Jamin, and W. Will-

inger. Network topology generators: Degree-based vs.
structural. In Proceedings of ACM Sigcomm, August 2002.

